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Abstract
In a recent paper (Acremann et al 2000 Science 290 492) the precessional
trajectory of the magnetization vector was imaged with spatial resolution as
a function of the time elapsed after a magnetic field pulse was applied. The
most surprising observations—the reversal of the magnetic excitation upon
reflection from the boundary and the spatial non-uniformities of the precessional
mode—have remained unaccounted for so far. Here we present a ‘back
of the envelope’ model of the precessional motion that is analytical, free
of adjustable parameters, and that reproduces all the essential experimental
features, including the behaviour of the dynamical magnetization at boundaries.

Let us consider applying a short magnetic field pulse to a magnetic element. If this field is
not exactly parallel to the ground-state magnetization vector there will be a torque and the
magnetization vector will start a precessional motion. This motion, which evolves typically
on the picosecond timescale, can be imaged with spatial and time resolution [1–5]. The
precessional mode might be technologically relevant; it has been suggested that it could become
important for increasing data rates in magnetic recording [6]. In fact, it has recently been
demonstrated that precessional switching with especially tailored magnetic field pulses can
indeed be observed in microstructured magnetic elements [7, 8]. There are several fundamental
questions on precessional motion that have not been answered satisfactorily so far. As the
size of the magnetic structures which store the information is shrinking, the influence of the
boundaries on the switching behaviour of the magnetic bits increases. Their role, however,
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is, in our opinion, not well understood. A recent experiment, for instance, has provided
images of the reflection of a spin excitation at the boundary of a micrometre-sized disc [2].
Surprisingly, the excitation was observed to reverse its sign upon reflection—a fact that has
remained unexplained so far. A further key question for technological applications is whether
the uniform precessional mode can be realized in micro- and nano-magnetic elements, so that
switching can proceed in a controlled way. Several experiments [1, 2] reported a systematic
development of spatial non-uniformities with unknown origin. Park et al reported two classes
of excitations in systems with closure domain configurations localized within the domains and
the domain walls. They also found edge localized modes that have previously been predicted
from Brillouin light scattering experiments [4, 9]. On the other hand, a recent experiment [7]
seems to have avoided those spatial non-uniformities by suitably shaping the magnetic element.

In this review, we provide an explanation for the observations reported in [2]. In that
experimental work, the magnetic element was a very thin Co-disc (radius R ∼ 3 µm, thickness
d ∼ 20 nm), see figure 1(A). The ground-state magnetization distribution consisted of at least
four in-plane magnetized domains (figure 1(B)) arranged to produce an almost ‘circulating’
flux-closure configuration (shown schematically in figure 1(C)). Of the experimental images
taken after exciting the magnetization vector �M with a short magnetic field pulse (see caption
to figure 1(A)), we consider here the images pertaining to the component of the magnetization
vector that could be detected with the greatest precision, namely the one perpendicular to the
plane on the disc (Mz). The experimental signal of this component is about ten times stronger
than the signal arising from the in-plane components. In [2], Mz was imaged as a function of
the position within the disc and of the time t elapsed after application of the magnetic field
pulse with ≈0.3 µm lateral spatial resolution and with picosecond time resolution. The images
display—as expected from the symmetry of the ground state—an approximate axial symmetry,
i.e. they are approximately invariant with respect to rotations around a z-axis passing through
the centre of the disc (figure 1(D)). Because of this axial symmetry, we restrict ourselves,
without losing experimental information, to re-plotting the experimental Mz(t, �r) of [2] along
one single axis ‘x’ passing through the origin of the disc, see figure 2(top). In this figure, the
spatial coordinate x is along the vertical scale, the time-coordinate t is along the horizontal
scale. The grey scale used to plot the experimental data is a measure of the strength of Mz ,
white and black indicating opposite orientations. The main features of figure 2(top) are the
following: the magnetic excitation builds up at the boundaries (‘A’), propagates to the centre
(‘B’), where it is reflected back with reversed amplitude. After hitting the boundary of the
disc, the excitation reverses sign again (‘C’) and travels back to the centre (‘D’). The pattern
of figure 2(top) can be roughly described as a >-shaped excitation repeating periodically in
time. The period can be directly read out from the figure. The motion is non-uniform in
space; in such a diagram a spatially uniform motion within the disc would appear as vertical
stripes repeating in time. Notice that the contrast weakens as time elapses, this is due to energy
dissipation which ultimately restores the ground-state in-plane magnetization.

We now proceed to construct a mathematical model of the experimental image
(figure 2(top)). We assume that the local magnetization vector �M(�r , t) obeys the Landau–
Lifshitz (LL) equation (neglecting energy dissipating terms). In this equation, the torque
on �M is exerted by an effective magnetic field which includes the externally applied field
pulse Bext, the local exchange field Bex , the effective fields arising from the various magnetic
anisotropies of spin–orbit-coupling origin and the effective field originating from the dipolar
interaction (from now on we will use �Heff because, by virtue of �Beff = Heff + 4π �M , it is the
only component of �B that actually exerts some torque on �M). Some aspects of figure 2(top)
help us in weighting the role of the various effective magnetic fields in contributing to the
motion of �M . The external magnetic field pulse triggers the motion; its time dependence
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Figure 1. (A): optical micrograph of the Co-dot. The lateral size of the figure is 12 µm. The
Co-dot is surrounded by a lithographically defined single-turn micro-coil into which a short current
pulse is launched. The micro-coil is connected to a current source, which, in the experiments of [2]
was an optically controlled, so-called Auston switch [2]. In an Auston switch device, a laser pulse
(called the ‘pump’ pulse) is directed onto a GaAs crystal. The photo-generated carriers produce a
current flowing between two contacts evaporated onto the crystal. Auston switches have rise times
of a few picoseconds and decay times of the order of 100 ps [2]. The current pulse produces a
magnetic field pulse perpendicular to the disc. (B): static domain distribution measured by scanning
electron microscopy with polarization analysis (SEMPA). In SEMPA [2], the spin polarization of
secondary emitted electrons is detected and is proportional to the surface magnetization within the
electron beam focus. In this figure, the instrument is set to detect the in-plane component along
the horizontal. The strong black–white contrast between the regions of the disc at the bottom
and at the top is indicative of domains being magnetized parallel (antiparallel) to the horizontal
direction. (C): schematic view of the static magnetization direction as obtained with SEMPA.
(D): a three-dimensional plot of the Mz component at ≈200 ps after excitation, showing the axial
symmetry. Mz was measured using the polar Kerr effect [10]. The laser beam, delayed by the time
t with respect to the ‘pump’ laser pulse by an optical delay line, is directed perpendicularly onto
the surface of the sample. Using a polarization sensitive detector, the polarization of the reflected
light is detected. For symmetry reasons, the rotation of the polarization depends solely on the
out-of-plane component of the magnetization. In our setup, we use a Wollaston prism which splits
the reflected beam into its two polarization components. The intensity of the two components
is measured using photodiodes. The difference of the two intensities is proportional to the Kerr
rotation.

and strength are known approximately [2]. This field is applied perpendicularly to the film
plane. Thus, it causes an initial in-plane deviation of �M from its ground-state value that
launches the time-dependent motion. This motion develops, as seen from the image, on spatial
scales of the order of micrometres. On this scale, the order of magnitude of (γ Hex)

−1, which
converts Hex to the characteristic time it takes to see its effect on the precessional motion,
is microseconds.This is because exchange fields are essentially proportional to the second
derivative of the magnetization profile, and this is very small when the excitation occurs on
micrometre spatial scales. Thus, we consider, from now on, the effective field arising from the
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Figure 2. Top: the perpendicular component of the magnetization vector Mz is plotted using a
grey scale along an axis x crossing the centre and at different times t after excitation by the external
magnetic field pulse. Bottom: Mz(x, t) calculated by superimposing 10 eigenmodes and using an
external field pulse with 12 ps rise time and 150 ps decay time [2]. Notice that the picture obtained
after superposition of the first six modes is essentially the same. As the field pulse has a finite
band width and the higher modes have a smaller projection onto the quite uniform external field
pulse, their contribution to the motion is negligible. To check for the accuracy of the variational
eigenvalues, the eigenvalue problem was solved numerically within a trial space consisting of 15
basis functions.

exchange interaction as negligible on the timescale of figure 2(top). Notice that, within the
timescale of figure 2(top), the exchange interaction produces a fine structure (such as a complex
magnetization distribution at the centre of the disc) at spatial scales comparable to the so-called
exchange length [11]. However, this spatial scale—typically some nanometres—is far below
the spatial resolution of figure 2(top). For estimating the role of magnetic anisotropies, we
consider the symmetry of the ground state. It is an in-plane flux-closure configuration that
can be explained by the dipolar interaction alone without invoking magnetic anisotropies. We
thus make the reasonable assumption that, besides the external applied magnetic pulse which
starts the process, the leading contribution to the torque is provided by the dipolar field of
magneto-static origin. The energy functional describing the total dipolar energy reads

Ed [ �M] = 1

2

∫ ∫
d3�r d3�s

�∇r
‖ �M‖(�r) · �∇s

‖ �Ms
‖(�s)

|�r − �s| +
∫ ∫

d3�r d3�s ∂zr Mz(�r) · ∂zs Mz(�s)
|�r − �s| (1)

where ‖ indicates the vector components parallel to the plane where the disc resides and z is
the coordinate perpendicular to it. This expression can be simplified using further elements of
figure 2(top). Because of the circular symmetry of both the ground state and the dynamical Mz -
mode, we introduce cylindrical coordinates �ρ = (ρ, ϕ, z) to describe a point �r and cylindrical
unit vectors (eρ, eϕ, ez) as basis vectors. We also estimate the deviation from the ground-state
configuration to be smaller than 5% [2], so that the component of �M along eϕ is assumed to
remain equal to the ground-state value Mϕ

0 for all times. Thus, the functional derivative of
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Ed [ �M]—which gives the effective field acting on �M—with respect to Mϕ is set to zero and the
corresponding terms in Ed[ �M] are, to lowest order, neglected. We use the identity(

∂zr ∂zs + �∇r
‖ · �∇s

‖
) 1

|�r − �s| = 4πδ(�r − �s) (2)

to write

Ed [ �M] � 2π d
∫

M2
z (ρ) d2 �ρ +

d2

2

∫ ∫
∇ρ Mρ(ρ)

1

| �ρ − �ρ ′|∇ρ′ Mρ′
(ρ ′) d2 �ρ d2 �ρ ′ (3)

where ∇ρ Mρ ≡ 1
ρ

∂
∂ρ

(ρMρ(ρ)). Equation (3) is a perturbative expression. The first term is

the energy arising from the z-component of �M appearing during the motion. It is of the order
d · R2 and contributes an effective field of the order d · R2/(d · R2) ≈ 1. The next term in Mz

would contribute a field of the order d/R and is neglected because, as d 	 R, it would only
provide a minor correction. Thus, the field acting onto �M by virtue of the lowest-order term in
Mz amounts to the standard ‘demagnetizing’ field −4π Mz pointing in the direction opposite
to Mz . This is the field of a perpendicularly magnetized plate with infinite radius. The finite
radius introduces corrections of the order d/R which are neglected here. The second term is
due to a radial component appearing during the motion. Its functional derivative is the radial
field Hρ[Mρ ]

Hρ[Mρ ] = d
∂

∂ρ

∫
disc

d2 �ρ ′ 1

| �ρ − �ρ ′|
1

ρ ′
∂

∂ρ ′ (ρ
′Mρ′ ) (4)

which is a linear functional of Mρ . Notice that it is of the order d/R. However, if neglected,
no precessional motion develops, in contrast to experiment. Thus, within this perturbational
approach, it makes sense neglecting the contribution of order d/R to the effective field along z,
but it makes no sense neglecting the contribution of the same order d/R to the radial field.
Now that all relevant fields are specified, we can write down the LL equations for the three
components of �M . In general, the LL equations couple the different components. By taking
the second time derivative of Mρ the LL equations can, in the present case, be decoupled to

∂2 Mρ

∂ t2
= −γ Mϕ

0

∂ Hext

∂ t
+ 4πγ 2(Mϕ

0 )2 Hρ[Mρ ] (5)

Mz(t, ρ) = (4πγ Mϕ

0 )−1

[∑
i

ċi (t)Mi
ρ(ρ) + γ Mϕ

0 Hext(t, �ρ)

]
. (6)

Equation (5) shows explicitly that the problem cannot be reduced to a standard wave equation.
Equation (6) allows Mz to be straightforwardly calculated once Mρ is known. We seek a
solution of equation (5) with the separation Ansatz Mρ(ρ, t) = ∑

i ci (t) · Mi
ρ(ρ). The radial

functions Mi
ρ(ρ) are the solutions of the eigenvalue equation6 Hρ[Mi

ρ ] = −Ni
ρ Mi

ρ . Inserting
the separation Ansatz in equation (5) leads to a set of decoupled ordinary differential equations
for the coefficient ci

c̈i + ω2
i ci = −γ Mϕ

0 (Hext(ρ), Mi
ρ(ρ))Ḣext(t) (7)

where the eigenfrequencies ωi are related to the sought for eigenvalues Ni
ρ by the relation

Nρ
.= 4π · ω2/(4πγ Mϕ

0 )2. The external field pulse is written as Hext(t) · Hext(ρ). The
dependences of both t and ρ are known approximately, see [2]. As equation (7) is the equation
of motion of a classical undamped forced harmonic oscillator, it can be solved analytically:

ci = −γ Mϕ

0 (Hext(ρ), Mi
ρ(ρ))

∫ ∞

−∞
Ḣext(τ )G(t, τ ) dτ (8)

6 The eigenfunctions can be orthogonalized to (Mi
ρ , M j

ρ ) = δi j with respect to the scalar product (a, b) =∫ R
0 a(ρ)b(ρ)2πρ dρ.
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with the Green function G(t, τ ) = 1
ωi

sin(ωi (t−τ )). One interesting particular case is provided
by Hext(t) ∝ δ(t). This problem can be solved at a glance. Its solution is equivalent to an
‘initial condition’ problem where there is no applied field pulse but the motion is initiated by
imposing a finite value to Mρ at t = 0. This is the ‘initial condition’ scenario used to give a
rough explanation of the motion in [2]. For a pulse with a more complicated shape, the time
integral can be performed numerically. Roughly speaking, the amplitude ci is related to the
amplitude of the time Fourier transform of the external field pulse at the frequency ωi .

The key elements of this problem are the eigenvalues Ni
ρ and the eigenmodes Mi

ρ(ρ).
Once they are specified the motion is completely known. To determine them we first notice
that the integral in equation (4) diverges for ρ = 0 unless Mρ |ρ=0 is zero. This establishes the
first boundary condition: the radial component of the magnetization must vanish in the centre
of the disc. Next, we notice that the exact solution of the eigenvalue equation for a disc with
infinite radius is Nρ = 2πd ·kρ and Mρ ∝ J1(kρρ), J1 being the first-order Bessel function and
kρ being the in-plane radial wavevector labelling the low energy excitations with frequency
ω ∝ √

kρ . When the disc has a finite radius, H op
ρ contains a contribution arising from the

‘magnetic charge’ building up at ρ = R by virtue of the abrupt change of Mρ from Mρ(R)

to zero. This contribution diverges unless Mρ(R) = 0. This establishes the second boundary
condition. Thus, within our two-dimensional model, the appearance, during the motion, of a
finite radial component Mρ at the centre of the disc or at the boundary ρ = R is associated
with an infinite magneto-static energy, so that pinning Mρ |0,R = 0 must be introduced to avoid
this divergence. By virtue of the vanishing of Mρ at ρ = R, the operator H op

ρ defined on a
disc with finite radius becomes an hermitic one. In the spirit of the Ritz variational principle,
J1(kρρ) are ‘good’ eigenfunctions for finite R as well, provided kρ is chosen to fulfil the
boundary condition J1(kρρ)|ρ=R = 0. This produces a discrete set of eigenvalues Ni

ρ and a
complete orthonormal basis set Mi

ρ on the disc. The analytical mode expansion of Mz(t, ρ),
calculated using these eigenfunctions and eigenvalues, is plotted in figure 2(bottom). This
figure, which essentially shows how the mixture of eigenmodes evolves in time and space,
reproduces qualitatively as well as quantitatively the >-shaped excitation front. In particular,
the back and forth propagation of the excitation crest between A, B, C, D is the result of
eigenmodes with appropriate frequency and spatial dependence coherently superimposing to
move the excitation crest and change its sign as observed in the experiment.

Notice that the theoretical pattern contains, in the very initial stages of the motion, sizable
contrast in the inner regions of the disc. This contrast is due to a portion of the excitation
developing from the middle of the disc. However, the pattern calculated in figure 2(bottom)
assumes immediate penetration of the applied magnetic field pulse into the whole disc. The
order of magnitude of the characteristic time that it takes a magnetic field to penetrate a metallic
object is τ ∼ 4πσ l2/c2, where σ is the conductivity and l is a characteristic linear dimension
of the conductor [12]. To decide whether the characteristic length l, for a disc, is its thickness
(in which case the orthogonal component of the field would penetrate through the film surface)
or its radius (penetration from the side), we solve the equation describing the field dynamics
in an infinitely extended film: (∇)2 Bz = 4πσ

c2
∂ Bz

∂ t . The Ansatz is Bz,m = e−t/τm Bz,m(z) [12],

where τm are the eigenvalues of the equation ∂2 Bz,m

∂z2 = − 4πσ
τm c2 Bz,m . Because of the boundary

conditions, this equation has non-zero solutions only for discrete values of τm , the largest value
determining the characteristic times of penetration or expulsion [12]. The general solution of
the eigenvalue equation is

Bz,m = am cos

√
4πσ

τmc2
z + bm sin

√
4πσ

τmc2
z. (9)
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For the model of an infinite sheet, div B = ∂ Bz

∂z ≡ 0. This leads to
√

4πσ
τm c2 = 0 i.e. the only

possible eigenvalue is 1/τm = 0 ⇐⇒ τm = ∞. This means that, for a disc with finite radius,
the sought for characteristic length is the radius of the disc and that the field penetration occurs
from the side. Thus, we do not expect the portion of the excitation developing from the central
part of the disc to be observed experimentally, i.e. we expect a better physical description if
one removes the contrast in the inner region of figure 2(bottom) during the initial stages of
motion. This is in agreement with the experimental image (figure 2(top)).

In summary, we have constructed a ‘back of the envelope’ solution of the LL equation of
motion for the geometry and the experimental parameters used in the experiments of [2]. The
solution, which contains reasonable approximations but does not contain adjustable parameters,
essentially reproduces the experimental spatio-temporal evolution of the spin excitation in the
disc. The most striking experimental observations—the reversal of the sign of the excitation
upon reflection and the quenching of the spatially uniform mode of precession—are a direct
consequence of the pinning of the magnetization at the centre and at the border of the disc.
This pinning, which was introduced to avoid unphysical singularities in our model, needs a
thorough discussion. Magnetic fields are, strictly speaking, only singular at boundaries in
the two-dimensional limit which we have adopted here [13–15]. In reality, boundaries have
a finite thickness and, although the fields might become large, they remain finite at two-
dimensional surfaces [13]. In the present case, Hρ|z=0,ρ→R− → −2π Mρ(R) [16]. Although
we have neglected exchange fields, their contribution to the torque might become sizable at
distances from the border comparable to the exchange length [14]. While the dipolar interaction
opposes the appearance of a radial component of the magnetization at the border, the stiffness
against misalignment introduced by the exchange interaction favours the appearance of such
a component at the border if one is present within the disc. Thus, although the reversal of the
sign of the excitation indicates that the magnetization at the border of the disc is pinned, we
actually do not know exactly—neither experimentally nor theoretically—what happens to the
magnetization vector at the border. In general, the boundary conditions become increasingly
complicated when the exchange field becomes more relevant, which is the case for nanoscale
magnetic elements or for higher modes in micron-scale elements, and magnetic anisotropies
play a role [17]. Then, the boundary conditions depend on the length scale of the excitation.
Thus, requiring pinning of the magnetization vector or setting its normal derivative at surfaces
to zero [11] is only a practical way to reduce the amount of simulation work involved; the actual
motion could be subject to more complicated boundary conditions. It will be one major task
of future experiments with high spatial resolution, e.g. at advanced x-ray sources, to determine
accurately the motion of spins close to boundaries, where, in our opinion, the main physics
resides.
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